Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.870
Filtrar
1.
Nature ; 627(8005): 854-864, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38480880

RESUMO

The heart, which is the first organ to develop, is highly dependent on its form to function1,2. However, how diverse cardiac cell types spatially coordinate to create the complex morphological structures that are crucial for heart function remains unclear. Here we integrated single-cell RNA-sequencing with high-resolution multiplexed error-robust fluorescence in situ hybridization to resolve the identity of the cardiac cell types that develop the human heart. This approach also provided a spatial mapping of individual cells that enables illumination of their organization into cellular communities that form distinct cardiac structures. We discovered that many of these cardiac cell types further specified into subpopulations exclusive to specific communities, which support their specialization according to the cellular ecosystem and anatomical region. In particular, ventricular cardiomyocyte subpopulations displayed an unexpected complex laminar organization across the ventricular wall and formed, with other cell subpopulations, several cellular communities. Interrogating cell-cell interactions within these communities using in vivo conditional genetic mouse models and in vitro human pluripotent stem cell systems revealed multicellular signalling pathways that orchestrate the spatial organization of cardiac cell subpopulations during ventricular wall morphogenesis. These detailed findings into the cellular social interactions and specialization of cardiac cell types constructing and remodelling the human heart offer new insights into structural heart diseases and the engineering of complex multicellular tissues for human heart repair.


Assuntos
Padronização Corporal , Coração , Miocárdio , Animais , Humanos , Camundongos , Coração/anatomia & histologia , Coração/embriologia , Cardiopatias/metabolismo , Cardiopatias/patologia , Ventrículos do Coração/anatomia & histologia , Ventrículos do Coração/citologia , Ventrículos do Coração/embriologia , Hibridização in Situ Fluorescente , Modelos Animais , Miocárdio/citologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Análise da Expressão Gênica de Célula Única
2.
J Gene Med ; 26(1): e3656, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38282147

RESUMO

BACKGROUND: The induction of cardiomyocyte (CM) proliferation is a promising approach for cardiac regeneration following myocardial injury. MicroRNAs (miRNAs) have been reported to regulate CM proliferation. In particular, miR-431 expression decreases during cardiac development, according to Gene Expression Omnibus (GEO) microarray data. However, whether miR-431 regulates CM proliferation has not been thoroughly investigated. METHODS: We used integrated bioinformatics analysis of GEO datasets to identify the most significantly differentially expressed miRNAs. Real-time quantitative PCR and fluorescence in situ hybridization were performed to determine the miRNA expression patterns in hearts. Gain- and loss-of-function assays were conducted to detect the role of miRNA in CM proliferation. Additionally, we detected whether miR-431 affected CM proliferation in a myocardial infarction model. The TargetScan, miRDB and miRWalk online databases were used to predict the potential target genes of miRNAs. Luciferase reporter assays were used to study miRNA interactions with the targeting mRNA. RESULTS: First, we found a significant reduction in miR-431 levels during cardiac development. Then, by overexpression and inhibition of miR-431, we demonstrated that miR-431 promotes CM proliferation in vitro and in vivo, as determined by immunofluorescence assays of 5-ethynyl-2'-deoxyuridine (EdU), pH3, Aurora B and CM count, whereas miR-431 inhibition suppresses CM proliferation. Then, we found that miR-431 improved cardiac function post-myocardial infarction. In addition, we identified FBXO32 as a direct target gene of miR-431, with FBXO32 mRNA and protein expression being suppressed by miR-431. FBXO32 inhibited CM proliferation. Overexpression of FBXO32 blocks the enhanced effect of miR-431 on CM proliferation, suggesting that FBXO32 is a functional target of miR-431 during CM proliferation. CONCLUSION: In summary, miR-431 promotes CM proliferation by targeting FBXO32, providing a potential molecular target for preventing myocardial injury.


Assuntos
MicroRNAs , Proteínas Musculares , Infarto do Miocárdio , Miócitos Cardíacos , Proteínas Ligases SKP Culina F-Box , Proliferação de Células/genética , Hibridização in Situ Fluorescente , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Musculares/genética , Infarto do Miocárdio/genética , Miócitos Cardíacos/citologia , RNA Mensageiro/metabolismo , Proteínas Ligases SKP Culina F-Box/metabolismo , Animais
3.
Circ Heart Fail ; 16(12): e010351, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38113297

RESUMO

BACKGROUND: PRDM16 plays a role in myocardial development through TGF-ß (transforming growth factor-beta) signaling. Recent evidence suggests that loss of PRDM16 expression is associated with cardiomyopathy development in mice, although its role in human cardiomyopathy development is unclear. This study aims to determine the impact of PRDM16 loss-of-function variants on cardiomyopathy in humans. METHODS: Individuals with PRDM16 variants were identified and consented. Induced pluripotent stem cell-derived cardiomyocytes were generated from a proband hosting a Q187X nonsense variant as an in vitro model and underwent proliferative and transcriptional analyses. CRISPR (clustered regularly interspaced short palindromic repeats)-mediated knock-in mouse model hosting the Prdm16Q187X allele was generated and subjected to ECG, histological, and transcriptional analysis. RESULTS: We report 2 probands with loss-of-function PRDM16 variants and pediatric left ventricular noncompaction cardiomyopathy. One proband hosts a PRDM16-Q187X variant with left ventricular noncompaction cardiomyopathy and demonstrated infant-onset heart failure, which was selected for further study. Induced pluripotent stem cell-derived cardiomyocytes prepared from the PRDM16-Q187X proband demonstrated a statistically significant impairment in myocyte proliferation and increased apoptosis associated with transcriptional dysregulation of genes implicated in cardiac maturation, including TGF-ß-associated transcripts. Homozygous Prdm16Q187X/Q187X mice demonstrated an underdeveloped compact myocardium and were embryonically lethal. Heterozygous Prdm16Q187X/WT mice demonstrated significantly smaller ventricular dimensions, heightened fibrosis, and age-dependent loss of TGF-ß expression. Mechanistic studies were undertaken in H9c2 cardiomyoblasts to show that PRDM16 binds TGFB3 promoter and represses its transcription. CONCLUSIONS: Novel loss-of-function PRDM16 variant impairs myocardial development resulting in noncompaction cardiomyopathy in humans and mice associated with altered TGF-ß signaling.


Assuntos
Cardiomiopatias , Proteínas de Ligação a DNA , Insuficiência Cardíaca , Transdução de Sinais , Fator de Crescimento Transformador beta , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Insuficiência Cardíaca/genética , Cardiomiopatias/genética , Cardiomiopatias/fisiopatologia , Miocárdio/patologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/patologia , Humanos , Masculino , Feminino , Animais , Camundongos , Técnicas de Introdução de Genes , Recém-Nascido , Pré-Escolar , Proliferação de Células/genética , Apoptose/genética , Fator de Crescimento Transformador beta/metabolismo , Transdução de Sinais/genética , Células Cultivadas
4.
Nature ; 622(7983): 619-626, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37758950

RESUMO

Postnatal maturation of cardiomyocytes is characterized by a metabolic switch from glycolysis to fatty acid oxidation, chromatin reconfiguration and exit from the cell cycle, instating a barrier for adult heart regeneration1,2. Here, to explore whether metabolic reprogramming can overcome this barrier and enable heart regeneration, we abrogate fatty acid oxidation in cardiomyocytes by inactivation of Cpt1b. We find that disablement of fatty acid oxidation in cardiomyocytes improves resistance to hypoxia and stimulates cardiomyocyte proliferation, allowing heart regeneration after ischaemia-reperfusion injury. Metabolic studies reveal profound changes in energy metabolism and accumulation of α-ketoglutarate in Cpt1b-mutant cardiomyocytes, leading to activation of the α-ketoglutarate-dependent lysine demethylase KDM5 (ref. 3). Activated KDM5 demethylates broad H3K4me3 domains in genes that drive cardiomyocyte maturation, lowering their transcription levels and shifting cardiomyocytes into a less mature state, thereby promoting proliferation. We conclude that metabolic maturation shapes the epigenetic landscape of cardiomyocytes, creating a roadblock for further cell divisions. Reversal of this process allows repair of damaged hearts.


Assuntos
Reprogramação Celular , Ácidos Graxos , Coração , Regeneração , Animais , Camundongos , Carnitina O-Palmitoiltransferase/deficiência , Carnitina O-Palmitoiltransferase/genética , Hipóxia Celular , Proliferação de Células , Metabolismo Energético , Ativação Enzimática , Epigênese Genética , Ácidos Graxos/metabolismo , Coração/fisiologia , Histona Desmetilases/metabolismo , Ácidos Cetoglutáricos/metabolismo , Mutação , Miocárdio , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Oxirredução , Regeneração/fisiologia , Traumatismo por Reperfusão , Transcrição Gênica
5.
Nature ; 619(7971): 801-810, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37438528

RESUMO

The function of a cell is defined by its intrinsic characteristics and its niche: the tissue microenvironment in which it dwells. Here we combine single-cell and spatial transcriptomics data to discover cellular niches within eight regions of the human heart. We map cells to microanatomical locations and integrate knowledge-based and unsupervised structural annotations. We also profile the cells of the human cardiac conduction system1. The results revealed their distinctive repertoire of ion channels, G-protein-coupled receptors (GPCRs) and regulatory networks, and implicated FOXP2 in the pacemaker phenotype. We show that the sinoatrial node is compartmentalized, with a core of pacemaker cells, fibroblasts and glial cells supporting glutamatergic signalling. Using a custom CellPhoneDB.org module, we identify trans-synaptic pacemaker cell interactions with glia. We introduce a druggable target prediction tool, drug2cell, which leverages single-cell profiles and drug-target interactions to provide mechanistic insights into the chronotropic effects of drugs, including GLP-1 analogues. In the epicardium, we show enrichment of both IgG+ and IgA+ plasma cells forming immune niches that may contribute to infection defence. Overall, we provide new clarity to cardiac electro-anatomy and immunology, and our suite of computational approaches can be applied to other tissues and organs.


Assuntos
Microambiente Celular , Coração , Multiômica , Miocárdio , Humanos , Comunicação Celular , Fibroblastos/citologia , Ácido Glutâmico/metabolismo , Coração/anatomia & histologia , Coração/inervação , Canais Iônicos/metabolismo , Miocárdio/citologia , Miocárdio/imunologia , Miocárdio/metabolismo , Miócitos Cardíacos/citologia , Neuroglia/citologia , Pericárdio/citologia , Pericárdio/imunologia , Plasmócitos/imunologia , Receptores Acoplados a Proteínas G/metabolismo , Nó Sinoatrial/anatomia & histologia , Nó Sinoatrial/citologia , Nó Sinoatrial/fisiologia , Sistema de Condução Cardíaco/anatomia & histologia , Sistema de Condução Cardíaco/citologia , Sistema de Condução Cardíaco/metabolismo
6.
Cells ; 12(8)2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-37190075

RESUMO

Cardiac diseases are the foremost cause of morbidity and mortality worldwide. The heart has limited regenerative potential; therefore, lost cardiac tissue cannot be replenished after cardiac injury. Conventional therapies are unable to restore functional cardiac tissue. In recent decades, much attention has been paid to regenerative medicine to overcome this issue. Direct reprogramming is a promising therapeutic approach in regenerative cardiac medicine that has the potential to provide in situ cardiac regeneration. It consists of direct cell fate conversion of one cell type into another, avoiding transition through an intermediary pluripotent state. In injured cardiac tissue, this strategy directs transdifferentiation of resident non-myocyte cells (NMCs) into mature functional cardiac cells that help to restore the native tissue. Over the years, developments in reprogramming methods have suggested that regulation of several intrinsic factors in NMCs can help to achieve in situ direct cardiac reprogramming. Among NMCs, endogenous cardiac fibroblasts have been studied for their potential to be directly reprogrammed into both induced cardiomyocytes and induced cardiac progenitor cells, while pericytes can transdifferentiate towards endothelial cells and smooth muscle cells. This strategy has been indicated to improve heart function and reduce fibrosis after cardiac injury in preclinical models. This review summarizes the recent updates and progress in direct cardiac reprogramming of resident NMCs for in situ cardiac regeneration.


Assuntos
Transdiferenciação Celular , Técnicas de Reprogramação Celular , Reprogramação Celular , Fibroblastos , Cardiopatias , Coração , Pericitos , Regeneração , Coração/fisiologia , Cardiopatias/terapia , Fibroblastos/citologia , Fibroblastos/fisiologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/fisiologia , Pericitos/citologia , Pericitos/fisiologia , Células Endoteliais/citologia , Células Endoteliais/fisiologia , Humanos , Animais
7.
J Biol Chem ; 299(5): 104694, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37044217

RESUMO

Directly reprogramming fibroblasts into cardiomyocytes improves cardiac function in the infarcted heart. However, the low efficacy of this approach hinders clinical applications. Unlike the adult mammalian heart, the neonatal heart has an intrinsic regenerative capacity. Consequently, we hypothesized that birth imposes fundamental changes in cardiac fibroblasts which limit their regenerative capabilities. In support, we found that reprogramming efficacy in vitro was markedly lower with fibroblasts derived from adult mice versus those derived from neonatal mice. Notably, fibroblasts derived from adult mice expressed significantly higher levels of pro-angiogenic genes. Moreover, under conditions that promote angiogenesis, only fibroblasts derived from adult mice differentiated into tube-like structures. Targeted knockdown screening studies suggested a possible role for the transcription factor Epas1. Epas1 expression was higher in fibroblasts derived from adult mice, and Epas1 knockdown improved reprogramming efficacy in cultured adult cardiac fibroblasts. Promoter activity assays indicated that Epas1 functions as both a transcription repressor and an activator, inhibiting cardiomyocyte genes while activating angiogenic genes. Finally, the addition of an Epas1 targeting siRNA to the reprogramming cocktail markedly improved reprogramming efficacy in vivo with both the number of reprogramming events and cardiac function being markedly improved. Collectively, our results highlight differences between neonatal and adult cardiac fibroblasts and the dual transcriptional activities of Epas1 related to reprogramming efficacy.


Assuntos
Reprogramação Celular , Miócitos Cardíacos , Fatores de Transcrição , Animais , Camundongos , Fibroblastos/citologia , Regulação da Expressão Gênica , Miócitos Cardíacos/citologia , Fatores de Transcrição/metabolismo , Animais Recém-Nascidos
8.
Biochem Biophys Res Commun ; 632: 181-188, 2022 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-36215905

RESUMO

The number of patients with heart failure and related deaths is rapidly increasing worldwide, making it a major problem. Cardiac hypertrophy is a crucial preliminary step in heart failure, but its treatment has not yet been fully successful. In this study, we established a system to evaluate cardiomyocyte hypertrophy using a deep learning-based high-throughput screening system and identified drugs that inhibit it. First, primary cultured cardiomyocytes from neonatal rats were stimulated by both angiotensin II and endothelin-1, and cellular images were captured using a phase-contrast microscope. Subsequently, we used a deep learning model for instance segmentation and established a system to automatically and unbiasedly evaluate the cardiomyocyte size and perimeter. Using this system, we screened 100 FDA-approved drugs library and identified 12 drugs that inhibited cardiomyocyte hypertrophy. We focused on ezetimibe, a cholesterol absorption inhibitor, that inhibited cardiomyocyte hypertrophy in a dose-dependent manner in vitro. Additionally, ezetimibe improved the cardiac dysfunction induced by pressure overload in mice. These results suggest that the deep learning-based system is useful for the evaluation of cardiomyocyte hypertrophy and drug screening, leading to the development of new treatments for heart failure.


Assuntos
Cardiomegalia , Aprendizado Profundo , Avaliação Pré-Clínica de Medicamentos , Insuficiência Cardíaca , Animais , Camundongos , Ratos , Angiotensina II/farmacologia , Cardiomegalia/diagnóstico por imagem , Cardiomegalia/tratamento farmacológico , Células Cultivadas , Colesterol , Avaliação Pré-Clínica de Medicamentos/métodos , Endotelina-1 , Ezetimiba , Insuficiência Cardíaca/tratamento farmacológico , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos
9.
Int J Mol Sci ; 23(17)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36076959

RESUMO

The sarcomere regulates striated muscle contraction. This structure is composed of several myofibril proteins, isoforms of which are encoded by genes specific to either the heart or skeletal muscle. The chromatin remodeler complex Chd4/NuRD regulates the transcriptional expression of these specific sarcomeric programs by repressing genes of the skeletal muscle sarcomere in the heart. Aberrant expression of skeletal muscle genes induced by the loss of Chd4 in the heart leads to sudden death due to defects in cardiomyocyte contraction that progress to arrhythmia and fibrosis. Identifying the transcription factors (TFs) that recruit Chd4/NuRD to repress skeletal muscle genes in the myocardium will provide important information for understanding numerous cardiac pathologies and, ultimately, pinpointing new therapeutic targets for arrhythmias and cardiomyopathies. Here, we sought to find Chd4 interactors and their function in cardiac homeostasis. We therefore describe a physical interaction between Chd4 and the TF Znf219 in cardiac tissue. Znf219 represses the skeletal-muscle sarcomeric program in cardiomyocytes in vitro and in vivo, similarly to Chd4. Aberrant expression of skeletal-muscle sarcomere proteins in mouse hearts with knocked down Znf219 translates into arrhythmias, accompanied by an increase in PR interval. These data strongly suggest that the physical and genetic interaction of Znf219 and Chd4 in the mammalian heart regulates cardiomyocyte identity and myocardial contraction.


Assuntos
DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Fatores de Transcrição , Animais , Regulação da Expressão Gênica , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Camundongos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Nucleossomos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
Adv Sci (Weinh) ; 9(31): e2202834, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35975420

RESUMO

Rho GTPases and Hippo kinases are key regulators of cardiomyoblast differentiation. However, how these signaling axes are coordinated spatiotemporally remains unclear. Here, the central and multifaceted roles of the BCH domain containing protein, BNIP-2, in orchestrating the expression of two key cardiac genes (cardiac troponin T [cTnT] and cardiac myosin light chain [Myl2]) in H9c2 and human embryonic stem cell-derived cardiomyocytes are delineated. This study shows that BNIP-2 mRNA and protein expression increase with the onset of cTnT and Myl2 and promote the alignment of H9c2 cardiomyocytes. Mechanistically, BNIP-2 is required for the inactivation of YAP through YAP phosphorylation and its cytosolic retention. Turbo-ID proximity labeling corroborated by super-resolution analyses and biochemical pulldown data reveals a scaffolding role of BNIP-2 for LATS1 to phosphorylate and inactivate YAP in a process that requires BNIP-2 activation of cellular contractility. The findings identify BNIP-2 as a pivotal signaling scaffold that spatiotemporally integrates RhoA/Myosin II and LATS1/YAP mechanotransduction signaling to drive cardiomyoblast differentiation, by switching the genetic programming from YAP-dependent growth to YAP-silenced differentiation. These findings offer insights into the importance of scaffolding proteins in bridging the gap between mechanical and biochemical signals in cell growth and differentiation and the prospects in translational applications.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Transporte , Mecanotransdução Celular , Miócitos Cardíacos , Proteínas de Sinalização YAP , Humanos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Diferenciação Celular , Proteínas Serina-Treonina Quinases , Transdução de Sinais , Animais , Ratos , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Miócitos Cardíacos/citologia , Proteínas de Sinalização YAP/genética , Proteínas de Sinalização YAP/metabolismo
11.
Cell Mol Biol (Noisy-le-grand) ; 68(5): 170-176, 2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-36029500

RESUMO

Myocardial ischemia is easy to cause hypoxia or necrosis of myocardial cells. At present, the performance of various patients is different. Basically, it is mainly caused by chest pain or chest discomfort. Severe patients may die suddenly. Therefore, looking for effective drugs or methods to prevent and treat Cardiomyocyte injury is of great significance for clinical practice, in which the expression of regulatory gene BCL-2 and microtubule-associated protein light chain 3B (LC3B) has a certain effect on hypoxia/reoxygenation injured cardiomyocytes. To this end, the team designed a study on the effect of miR-497 on the expression of target genes BCL-2 and LC3B on cardiomyocytes injured by hypoxia/reoxygenation. In this study, a control group experiment was set up for the study. During the experiment, the cells were treated with hypoxia-reoxygenation and transfected with the corresponding miR-497 treated cells. By detecting apoptosis, the kit was used to detect cell activity and RT-PCR detection. Gene expression levels and other methods are comparatively judged. The results of this study showed that compared with the normal group 14.50±0.78, the viability of cardiomyocytes in the model group was significantly reduced (P<0.01), the amount of NO released by cardiomyocytes was reduced (P<0.01), and the protein expression in cardiomyocytes was significantly reduced (P<0.01). The experimental results of this study prove that miR-497 can alleviate the damage caused by hypoxia-reoxygenation of cardiomyocytes by regulating target genes BCL-2 and LC3B.


Assuntos
MicroRNAs , Traumatismo por Reperfusão Miocárdica , Miócitos Cardíacos , Apoptose , Células Cultivadas , Humanos , Hipóxia , MicroRNAs/genética , Proteínas Associadas aos Microtúbulos/genética , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética
12.
Circulation ; 146(5): 412-426, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35862076

RESUMO

BACKGROUND: The human heart has limited capacity to generate new cardiomyocytes and this capacity declines with age. Because loss of cardiomyocytes may contribute to heart failure, it is crucial to explore stimuli of endogenous cardiac regeneration to favorably shift the balance between loss of cardiomyocytes and the birth of new cardiomyocytes in the aged heart. We have previously shown that cardiomyogenesis can be activated by exercise in the young adult mouse heart. Whether exercise also induces cardiomyogenesis in aged hearts, however, is still unknown. Here, we aim to investigate the effect of exercise on the generation of new cardiomyocytes in the aged heart. METHODS: Aged (20-month-old) mice were subjected to an 8-week voluntary running protocol, and age-matched sedentary animals served as controls. Cardiomyogenesis in aged hearts was assessed on the basis of 15N-thymidine incorporation and multi-isotope imaging mass spectrometry. We analyzed 1793 cardiomyocytes from 5 aged sedentary mice and compared these with 2002 cardiomyocytes from 5 aged exercised mice, followed by advanced histology and imaging to account for ploidy and nucleation status of the cell. RNA sequencing and subsequent bioinformatic analyses were performed to investigate transcriptional changes induced by exercise specifically in aged hearts in comparison with young hearts. RESULTS: Cardiomyogenesis was observed at a significantly higher frequency in exercised compared with sedentary aged hearts on the basis of the detection of mononucleated/diploid 15N-thymidine-labeled cardiomyocytes. No mononucleated/diploid 15N-thymidine-labeled cardiomyocyte was detected in sedentary aged mice. The annual rate of mononucleated/diploid 15N-thymidine-labeled cardiomyocytes in aged exercised mice was 2.3% per year. This compares with our previously reported annual rate of 7.5% in young exercised mice and 1.63% in young sedentary mice. Transcriptional profiling of young and aged exercised murine hearts and their sedentary controls revealed that exercise induces pathways related to circadian rhythm, irrespective of age. One known oscillating transcript, however, that was exclusively upregulated in aged exercised hearts, was isoform 1.4 of regulator of calcineurin, whose regulation and functional role were explored further. CONCLUSIONS: Our data demonstrate that voluntary running in part restores cardiomyogenesis in aged mice and suggest that pathways associated with circadian rhythm may play a role in physiologically stimulated cardiomyogenesis.


Assuntos
Miócitos Cardíacos , Condicionamento Físico Animal , Animais , Calcineurina/metabolismo , Humanos , Lactente , Camundongos , Miócitos Cardíacos/citologia , Timidina/metabolismo
13.
Clin Transl Med ; 12(7): e941, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35808830

RESUMO

BACKGROUND: Congenital heart disease (CHD) is the most common birth defect and has high heritability. Although some susceptibility genes have been identified, the genetic basis underlying the majority of CHD cases is still undefined. METHODS: A total of 1320 unrelated CHD patients were enrolled in our study. Exome-wide association analysis between 37 tetralogy of Fallot (TOF) patients and 208 Han Chinese controls from the 1000 Genomes Project was performed to identify the novel candidate gene WD repeat-containing protein 62 (WDR62). WDR62 variants were searched in another expanded set of 200 TOF patients by Sanger sequencing. Rescue experiments in zebrafish were conducted to observe the effects of WDR62 variants. The roles of WDR62 in heart development were examined in mouse models with Wdr62 deficiency. WDR62 variants were investigated in an additional 1083 CHD patients with similar heart phenotypes to knockout mice by multiplex PCR-targeting sequencing. The cellular phenotypes of WDR62 deficiency and variants were tested in cardiomyocytes, and the molecular mechanisms were preliminarily explored by RNA-seq and co-immunoprecipitation. RESULTS: Seven WDR62 coding variants were identified in the 237 TOF patients and all were indicated to be loss of function variants. A total of 25 coding and 22 non-coding WDR62 variants were identified in 80 (6%) of the 1320 CHD cases sequenced, with a higher proportion of WDR62 variation (8%) found in the ventricular septal defect (VSD) cohort. WDR62 deficiency resulted in a series of heart defects affecting the outflow tract and right ventricle in mouse models, including VSD as the major abnormality. Cell cycle arrest and an increased number of cells with multipolar spindles that inhibited proliferation were observed in cardiomyocytes with variants or knockdown of WDR62. WDR62 deficiency weakened the association between WDR62 and the cell cycle-regulated kinase AURKA on spindle poles, reduced the phosphorylation of AURKA, and decreased expression of target genes related to cell cycle and spindle assembly shared by WDR62 and AURKA. CONCLUSIONS: WDR62 was identified as a novel susceptibility gene for CHD with high variant frequency. WDR62 was shown to participate in the cardiac development by affecting spindle assembly and cell cycle pathway in cardiomyocytes.


Assuntos
Proteínas de Ciclo Celular , Cardiopatias Congênitas , Comunicação Interventricular , Miócitos Cardíacos , Tetralogia de Fallot , Animais , Aurora Quinase A/genética , Aurora Quinase A/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Divisão Celular , Exoma , Cardiopatias Congênitas/genética , Comunicação Interventricular/genética , Humanos , Camundongos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Tetralogia de Fallot/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
14.
Methods Mol Biol ; 2485: 87-97, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35618900

RESUMO

Three-dimensional, human engineered heart tissue promotes maturation of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and provides a useful platform for in vitro cardiac development and disease modeling. This protocol describes the generation of fibrin-based engineered heart tissues (EHTs) containing hiPSC-CMs and human stromal cells. The platform makes use of racks of silicone posts that fit a standard 24-well dish. Stromal cells and hiPSC-CMs are cast in a fibrin hydrogel suspended between two silicone posts, forming an engineered tissue that generates synchronous contractions. The platform described herein is amenable to various measures of cardiac function including measurement of contractile force and calcium handling, as well as molecular biology assays and immunostaining.


Assuntos
Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Engenharia Tecidual , Fibrina , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Miócitos Cardíacos/citologia , Silicones
15.
Dev Cell ; 57(8): 959-973.e7, 2022 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-35472321

RESUMO

Noncompaction cardiomyopathy is a common congenital cardiac disorder associated with abnormal ventricular cardiomyocyte trabeculation and impaired pump function. The genetic basis and underlying mechanisms of this disorder remain elusive. We show that the genetic deletion of RNA-binding protein with multiple splicing (Rbpms), an uncharacterized RNA-binding factor, causes perinatal lethality in mice due to congenital cardiovascular defects. The loss of Rbpms causes premature onset of cardiomyocyte binucleation and cell cycle arrest during development. Human iPSC-derived cardiomyocytes with RBPMS gene deletion have a similar blockade to cytokinesis. Sequencing analysis revealed that RBPMS plays a role in RNA splicing and influences RNAs involved in cytoskeletal signaling pathways. We found that RBPMS mediates the isoform switching of the heart-enriched LIM domain protein Pdlim5. The loss of Rbpms leads to an abnormal accumulation of Pdlim5-short isoforms, disrupting cardiomyocyte cytokinesis. Our findings connect premature cardiomyocyte binucleation to noncompaction cardiomyopathy and highlight the role of RBPMS in this process.


Assuntos
Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Proteínas de Ligação a RNA , Animais , Citocinese , Ventrículos do Coração/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
16.
Dev Cell ; 57(4): 424-439, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35231426

RESUMO

Cardiovascular disease is a leading cause of death worldwide, and thus there remains great interest in regenerative approaches to treat heart failure. In the past 20 years, the field of heart regeneration has entered a renaissance period with remarkable progress in the understanding of endogenous heart regeneration, stem cell differentiation for exogenous cell therapy, and cell-delivery methods. In this review, we highlight how this new understanding can lead to viable strategies for human therapy. For the near term, drugs, electrical and mechanical devices, and heart transplantation will remain mainstays of cardiac therapies, but eventually regenerative therapies based on fundamental regenerative biology may offer more permanent solutions for patients with heart failure.


Assuntos
Coração , Miocárdio/citologia , Miócitos Cardíacos/citologia , Regeneração/fisiologia , Medicina Regenerativa , Animais , Coração/fisiologia , Humanos , Medicina Regenerativa/métodos , Transplante de Células-Tronco/métodos
17.
Oxid Med Cell Longev ; 2022: 2785113, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35116091

RESUMO

OBJECTIVE: Myocardial ischemia/reperfusion (I/R) injury can aggravate myocardial injury. Programmed necrosis plays a crucial role in this injury. However, the role of exosomal miRNAs in myocardial I/R injury remains unclear. Therefore, this study is aimed at exploring the function and mechanism of exosomal miR-17-3p in myocardial I/R injury. METHODS: The myocardial I/R injury animal model was established in C57BL/6 mice. Exosomes were identified using transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and Western blotting. Programmed necrosis was detected by PI staining. Heart function and myocardial infarct size were evaluated using echocardiography and triphenyl tetrazolium chloride (TTC) staining, respectively. Histopathological changes were visualized by hematoxylin and eosin (H&E) and Masson staining. The regulation of TIMP3 expression by miR-17-3p was verified using a dual-luciferase reporter assay. Lactate dehydrogenase (LDH) and tumor necrosis factor-α (TNF-α) levels were measured by enzyme-linked immunosorbent assays (ELISA). TIMP3 expression was measured by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and Western blotting. RESULTS: We demonstrated that miR-17-3p was significantly downregulated in peripheral blood exosomes after cardiac I/R injury. Further analysis indicated that exosomal miR-17-3p attenuated H2O2-induced programmed necrosis in cardiomyocytes in vitro. Moreover, TIMP3 was a target for miR-17-3p. TIMP3 affected H2O2-induced programmed necrosis in cardiomyocytes. This effect was modulated by miR-17-3p in vitro. Furthermore, exosomal miR-17-3p greatly alleviated cardiac I/R injury in vivo. CONCLUSIONS: The present study demonstrated that exosomal miR-17-3p alleviated the programmed necrosis associated with cardiac I/R injury by regulating TIMP3 expression. These findings could represent a potential treatment for I/R injury.


Assuntos
Exossomos/metabolismo , MicroRNAs/metabolismo , Inibidor Tecidual de Metaloproteinase-3/metabolismo , Regiões 3' não Traduzidas , Animais , Antagomirs/metabolismo , Apoptose/efeitos dos fármacos , Sítios de Ligação , Células Cultivadas , Modelos Animais de Doenças , Regulação para Baixo , Peróxido de Hidrogênio/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Inibidor Tecidual de Metaloproteinase-3/química , Inibidor Tecidual de Metaloproteinase-3/genética , Fator de Necrose Tumoral alfa/análise
18.
Life Sci ; 294: 120371, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35122795

RESUMO

BACKGROUND: Neonatal hearts have considerable regenerative potential within 7 days post birth (P7), but the rate of regeneration is extremely low after P7. Interestingly, lipid metabolism increases dramatically after P7. The similarities in these age profiles suggests a possible link between cardiac regeneration and lipid metabolism. Acyl CoA synthase long chain family member 1 (ACSL1) is the key enzyme that regulates lipid metabolism. The aim of this study was to identify the role of ACSL1 in the regeneration of cardiomyocytes. METHODS AND RESULTS: The uptake of fatty acids in hearts increased after P7; however, myocardial regeneration was decreased. We profiled an RNA-sequence array of hearts from mice of different ages, including E10.5 (embryonic stage)-, 3-, 7-, 21-, 30-, and 60-day-old mice, and found that the expression of ACSL1 was significantly increased after P7. By establishing ACSL1 knockdown mice with adeno-associated virus (AAV9). Then, we verified that knockdown of ACSL1 enhanced the capacity for myocardial regeneration both in mice and in primary cardiomyocytes. Indeed, ACSL1 knockdown in primary cardiomyocytes promoted the cell cycle progression from G0 to G2 phase by regulating specific factors, which may correlate with the activation of AKT by ACSL1 and withdrawal of FOXO1 from the nucleus. In vivo, knockdown of ACSL1 effectively restored cardiac function and myocardial regeneration in adult mice with myocardial infarction (MI). CONCLUSIONS: ACSL1 possibly induces the loss of the myocardial regenerative potential beginning at P7 in mice, and inhibition of ACSL1 effectively promoted myocardial repair after MI in mice.


Assuntos
Proliferação de Células , Coenzima A Ligases/antagonistas & inibidores , Metabolismo dos Lipídeos , Infarto do Miocárdio/terapia , Miócitos Cardíacos/citologia , Regeneração , Fatores Etários , Animais , Animais Recém-Nascidos , Camundongos , Camundongos Endogâmicos ICR , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Ratos
19.
Oxid Med Cell Longev ; 2022: 1121323, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35126805

RESUMO

BACKGROUND: Mitochondrial dysfunction and abnormal mitochondrial fission have been implicated in the complications associated with I/R injury as cardiomyocytes are abundant in mitochondria. SOCS6 is known to participate in mitochondrial fragmentation, but its exact involvement and the pathways associated are uncertain. METHODS AND RESULTS: The expression of SOCS6 was analyzed by western blot in cardiomyocytes under a hypoxia and reoxygenation (H/R) model. A dual-luciferase reporter assay was used to confirm the direct interaction between miR-19b and the 3'-UTR of Socs6. In the present study, we found that Socs6 inhibition by RNA interference attenuated H/R-induced mitochondrial fission and apoptosis in cardiomyocytes. A luciferase assay indicated that Socs6 is a direct target of miR-19b. The overexpression of miR-19b decreased mitochondrial fission and apoptosis in vitro. Moreover, the presence of miR-19b reduced the level of SOCS6 and the injury caused by I/R in vivo. There were less apoptotic cells in the myocardium of mice injected with miR-19b. In addition, we found that the RNA-binding protein, Quaking (QK), participates in the regulation of miR-19b expression. CONCLUSIONS: Our results indicate that the inhibition of mitochondrial fission through downregulating Socs6 via the QK/miR-19b/Socs6 pathway attenuated the damage sustained by I/R. The QK/miR-19b/Socs6 axis plays a vital role in regulation of mitochondrial fission and cardiomyocyte apoptosis and could form the basis of future research in the development of therapies for the management of cardiac diseases.


Assuntos
Apoptose , MicroRNAs/metabolismo , Dinâmica Mitocondrial , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Regiões 3' não Traduzidas , Animais , Antagomirs/metabolismo , Linhagem Celular , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Supressoras da Sinalização de Citocina/antagonistas & inibidores , Proteínas Supressoras da Sinalização de Citocina/genética
20.
Oxid Med Cell Longev ; 2022: 1927260, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35126807

RESUMO

Increased neutrophil recruitment represents a hallmark event in myocardial ischemia/reperfusion (I/R) injury due to the ensuing inflammatory response. Circular RNAs (circRNAs) are important regulatory molecules involved in cell physiology and pathology. Herein, we analyzed the role of a novel circRNA circ_SMG6 in the regulation of neutrophil recruitment following I/R injury, which may associate with the miR-138-5p/EGR1/TLR4/TRIF axis. Myocardial I/R injury was modeled in vivo by ligation of the left anterior descending (LAD) artery followed by reperfusion in mice and in vitro by exposing a cardiomyocyte cell line (HL-1) to hypoxia/reoxygenation (H/R). Gain- and loss-of-function experiments were performed to evaluate the effect of the circ_SMG6/miR-138-5p/EGR1/TLR4/TRIF axis on cardiac functions, myocardial infarction, myocardial enzyme levels, cardiomyocyte activities, and neutrophil recruitment. We found that the EGR1 expression was increased in myocardial tissues of I/R mice. Knockdown of EGR1 was found to attenuate I/R-induced cardiac dysfunction and infarction area, pathological damage, and cardiomyocyte apoptosis. Mechanistic investigations showed that circ_SMG6 competitively bound to miR-138-5p and consequently led to upregulation of EGR1, thus facilitating myocardial I/R injury in mice and H/R-induced cell injury. Additionally, ectopic EGR1 expression augmented neutrophil recruitment and exacerbated the ensuing I/R injury, which was related to the activated TLR4/TRIF signaling pathway. Overall, our findings suggest that circ_SMG6 may deteriorate myocardial I/R injury by promoting neutrophil recruitment via the miR-138-5p/EGR1/TLR4/TRIF signaling. This pathway may represent a potential therapeutic target in the management of myocardial I/R injury.


Assuntos
Proteína 1 de Resposta de Crescimento Precoce/metabolismo , MicroRNAs/metabolismo , RNA Circular/metabolismo , Transdução de Sinais , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Antagomirs/metabolismo , Apoptose , Linhagem Celular , Modelos Animais de Doenças , Proteína 1 de Resposta de Crescimento Precoce/antagonistas & inibidores , Proteína 1 de Resposta de Crescimento Precoce/genética , Masculino , Malondialdeído/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/veterinária , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Interferência de RNA , RNA Circular/antagonistas & inibidores , RNA Circular/genética , RNA Interferente Pequeno/metabolismo , Receptor 4 Toll-Like/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...